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Abstract—An analogue computer was used to determine the effect of frequency and duration of contact
per cycle on heat transfer through surfaces which are meeting and separating according to a regular cycle.
The surfaces were of identical materials and perfect thermal contact and separation are assumed.

The results show that at high frequencies, the loss of heat transfer rate arising from the interruption
of heat flow due to separation of the surfaces, is small and less dependent on duration of contact per cycle
than at low frequencies. The relationship between loss of heat transfer rate, frequency and duration of
contact is shown by a single curve.
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NOMENCLATURE
distance from contact plane to
point B (Fig. 1);
thermal conductance at contact
plane;
distance from point A to contact
plane (Fig. 1);
thermal conductivity of hotter
member ;
thermal conductivity of colder
member ;
length;
dimensionless loss of heat transfer
(equation 12);
time;
temperature;
temperature at any point in colder
member ;
temperature at any point in hotter
member;
temperature at contact plane with
perfect thermal contact ;
temperature at contact plane on
colder member;
temperature at contact plane on
hotter member;
respectively, instantaneous and

mean temperature difference from
steady-state permanent contact

condition;

AT\, AT, (T, — T,y) and (T, — T,) see Fig.
4(b);

X, distance;

, heat flux — transfer rate per unit

area;

o, thermal diffusivity;

T, time surfaces are in contact ;

Tos time surfaces are separated ;

£, frequency ;

4, depth below surface at which
temperature fluctuation is neg-
ligible ;

F(y),g(y), function of y.

1. INTRODUCTION

THIS work is concerned with heat transfer
through two surfaces which are undergoing
a continuous, regular cycle of contact and
separation. Practical examples of this, include
that part of the heat transfer from the exhaust
valve of an internal combustion engine which
travels via the seating. While the valve is closed,
the valve head is in contact with the valve seat
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in the cylinder head and heat flows from the
valve through the contacting surfaces. When the
valve opens and the contact surfaces are sep-
arated, heat transfer is severely curtailed. Other
examples are the heat transfer between work-
piece and die in repetitive hot metal deformation
processes and between soldering iron and
workpieces.

In such cases, the heat transfer will depend
upon the frequency and duration of contact,
the overall temperature difference, thermal
contact resistance at the contact surfaces, and
the thermal properties of the materials in
contact. A great deal of work has been done on
thermal contact resistances of surfaces which
are permanently in contact. References [1--3]
contain valuable sources of information on
both steady state and transient heat transfer.

However, in this present report, one-dimen-
sional heat flow only is considered, with the
simplifying assumptions of perfect thermal
contact at the surfaces (i.e. no thermal contact
resistance) and perfect thermal separation when
the surfaces were not in contact.

The report describes an investigation using
an analogue computer and forms part of a
wider study by one of the authors (JRH).
Current experimental work and further com-
puter investigation now in progress will be
reported later.

2. STATEMENT OF PROBLEM

2.1 General

Consider two bars of material AH and CB
with their axes in line as shown in Fig. 1(a),
and with one end H of one bar touching one
end C of the other. If there were a steady, one-
dimensional flow of heat along the axes of the
bars i.e. no radial heat loss, then the temperature
distribution would be as shown by line A, T, B
in Fig. 1(b).

If then the ends of the bars were separated
by a small distance and the temperature at
A and B were to remain unchanged, the steady
heat flow through the system would be very
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greatly reduced. Thus the temperature dis-
tribution would be given by 4, T, , T, and B.
Clearly, under intermittent contact conditions,
the temperature distribution will be between
these two extremes, with the temperature near
the contacting surfaces varying with time.
Intermittent contact conditions will now be
considered.

2.2 Assumptions

(i) The two bars are of equal cross-sectional
area and have identical thermal properties.

(ii) When the two faces are brought together,
perfect thermal contact is made. Under these
circumstances, the temperature at the contact
plane will change instantaneously [4] to the
mean value of the two surface temperatures
which existed just before contact was made.

(iii) When the surfaces are separated by a
very small distance, the heat transfer rate is
very small compared with that when the surfaces
are in perfect thermal contact. For simplicity
it is therefore assumed that when the surfaces
are separated no heat transfer occurs.

(iv) Temperatures T, and T; are known. In
our case we stipulate that they are at a fixed
value for all time. This enables the temperature
gradient at 4 and B to be determined. Instan-
taneous temperature distributions are shown
in Fig. 2 for two cases; one with the surfaces
in contact (line AbT,dB) the other when the sur-
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faces are separated (line AbT,,, T, dB). Figure 3
shows the temperature-time relation at the
contact plane of the hotter member.

2.3 Basic equation
Referring to Fig. 2 the heat diffusion equation

aT <32 T)

o~ \ax?
applies on either side of the contact plane, at
all times.

Since the contact plane represents a dis-
continuity, equation (1) must be solved in
four parts, because (a) the two members may be
different materials, (although in our case identi-
cal materials are assumed) and (b) because of
the two separate time periods; viz. surfaces in
contact and when they are separated. Using the
nomenclature given in the List of Symbols

ey
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and referring to Fig. 2 the following boundary
conditions arise.

2.4 Boundary conditions

1. T, and T fixed at all times.

2. At x=H and 0<t<rt, (ie. during
contact period)

TOH = To c
[Note that this is only true when assumption (1)
Section 2.2 is made].

3. Atx=Handrt, <t < (1. + 170)

0Ty T _
ta () =k () =0

2.5 Initial condition
T(X)y=o = T4 —

TA—TB)X
H+C/)”

ie. “steady state, surfaces permanently in
contact” temperature distribution, chosen in
order to reach the quasi-steady state rapidly.

2.6 Heat flow
The time-average heat flux is given by

H a ¢
b=l <12, @

3. ANALOGUE

3.1 The model

For convenience it was assumed that the
two members were of identical material so
that the temperature distribution would be
symmetrical about the contact plane. The heat
flux will be unaffected by the location of the
plane of contact, so long as the zone in its
immediate region, where the temperature is
fluctuating, does not encroach on to the ends
where the temperature is fixed (see Appendix A).
Only the hotter member was therefore con-
sidered and it was divided into finite elements
shown by the table of distances in Fig. 4(a).
The steady state temperature distribution, with
the end permanently in contact with the colder
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member is also shown in Fig. 4(b) by the line
A7. The following material properties were
assumed.

. J
Specific heat C = 460 Kg degC
. kg
Density p = 7550 =
k 2
Diffusivity « = p_C =5 10-6r_:‘
Thermal conductivity k = 17-4 W
ermal conductivity k = m degC
Specimen length 0-7 = 004 m.

3.2 Dimensional analysis

Referring to the model Fig. 4 the heat transfer
rate per unit cross-sectional area ¢, depends on
the temperature difference (T, — T;) between
the ends, the overall length [, thermal conduc-
tivity K, thermal diffusivity o, frequency of
contact f and duration of contact per cycle
(f7e)-

Boundary condition 1, Section 2.4, implies
that ends A4 and B of the two bars, Figs. 1 and
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2, are in perfect thermal contact with heat
reservoirs at temperatures T, and Ty respectively,
of infinite heat capacity and made of a substance
whose thermal conductivity is infinite.

If instead the bars were in perfect thermal
contact at 4 and B with a system of finite
properties then the temperature at 4 and B
would fluctuate due to the periodic interruption
of the heat flow at the contact plane. However,
if the length of the bars is sufficiently large then
the amplitude of temperature fluctuations at A4
and B would be very small once a “quasi-
steady” state had been reached. If length [
equals J in equation (3) below, [5. 6].

iTca
5=16 |7 3)
\/ 7 G

and the temperature at the contact plane varies
sinusoidally, the amplitude of temperature fluc-
tuation at depth § from the contact plane is
only 0-66 per cent of that at the contact plane.

To test the accuracy of the analogue simula-
tion, the amplitude of the temperature at
stations 2 and 7 in the rod, Fig. 4(a), were
compared. The ratio of these two amplitudes
agreed closely with that computed from the
exact solution of the heat diffusion equation (1)
for a semi-infinite solid whose surface tempera-
ture vaties periodically with time [6].

Furthermore, once ! exceeds § and providing
that the time-average heat flux is unchanged,
an increase in ! will only introduce an additional
series thermal resistance into the system. Thus
the thermal resistances of the system consists
of two independent thermal resistances in series,
R, and R;, R, being the resistance under con-
tinuous contact conditions due to the length |
of the conducting material (of unit cross-
sectional area) and R, being due to the periodic
interruption of the heat flow.

R; may also be represented by a length, [;, of
the same conducting material of unit cross-
sectional area.

1t is desirable therefore to choose dimension-
less groups which reflect the independence of
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R, and R, isolating ! in one of them. Note:
R; = F[f, (f)]

Notice that if the contact plane is situated
at a distance less than J from the extreme ends
A and B of the two bars (a case we have not
considered), then the loss of heat flow is reduced,
until when the contact plane is at the end, the
loss of heat flow is half that when the contact
plane is located at a distance greater than ¢
from the ends.

Referring again to Fig. 4(b) which shows the
quasi-steady state time-average temperature
distribution when the surfaces are meeting
and parting regularly, together with the dis-
tribution under steady state surfaces per-
manently in contact condition, it will be seen
that the loss of heat flux due to periodic in-
terruption of the heat flow is given by

KT, — Ty KT —Ty)

b - 0= (%1 = xo) B Xy — Xo)
KT =T
HCE R

This may be expressed non-dimensionally as

,_$-9¢_Th-T, _T-T
¢s TA - ns TA - T7s
l;
D &)
whence
IL
=

The relationship between the dimensionless
parameters can be expressed in the form

(-[E)w] o

But using equation (3), when (f1?/a) > 2:56m,
l; is independent of ! and hence (fI?/x) is
independent of (f1%/a)

Hence

[
(_) = g(ftc) OHIY' (8)

o4

Thus, the number of significant dimensionless
groups involved is two instead of three, with
the advantage of saving a complete dimension
of computation without loss of generality.

In our experiment the values of (f/I?/a) ranged
from 4-64 to 3210.

3.3 Finite-difference equations

Equation (1) was written in finite-difference
form.

At any position on the model the temperature
difference T between the “steady-state surfaces
permanently in contact” condition and the tem-
perature when the surfaces are meeting and
parting regularly (and quasi-steady state is
reached) is described by the equations below.
Thus, referring to Fig. 4b), AT, = T — T, etc.
ie. AT, is the difference between the actual
temperature in the quasi-steady state and the
temperature when the steady state surfaces
permanently in contact is attained. Putting
D = (d/dv)

D(AT,) = 0089 AT, — 0098 AT, + Q0089 AT,
©

in which AT, is zero since our boundary con-
dition at position 0 is that the temperature
remains fixed for all cases.

D(AT;) = 0488 AT, — 0976 AT,

+ 0488 AT, (10)
D(ATy) = 695 AT, — 782 AT,
+ 0-87 AT, (11)
D(AT,) = 3125 ATs — 625 AT,
+ 3125 AT, (12)
D(AT;) = 31-25 ATy — 62-5 AT,
+ 3125A1, (13)
D(ATy) = 3125 AT, — 62-5 AT,
+ 3125 AT, (14)
When surfaces are in contact
AT, = 0. (15)
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When surfaces are separated

D(AT,)) = 625 AT, — 62:5AT, + 62:5. (16)
3.4 Circuitry

Figure 5 shows the circuit diagram employed
on a PACE analogue computer.

Meeting and parting of the surfaces was simu-
lated by the closing and opening of a switch
whose frequency of operation and duration of
closure could be varied. The switch was con-
nected across amplifier 4 as shown in Fig. 5.

Outputs AT, and AT, were measured with a
digital voltmeter. At low frequencies of contact
however, these outputs fluctuated cyclically
and they were then measured with an U.V.
recorder and time mean values determined.
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Output AT, was measured with an U.V.
recorder at all times so that frequency and
duration of contact could be determined (A
typical trace of AT, is shown in Fig. 6.)

4. PROCEDURE
4.1 Temperature distribution
The computer was switched on with the
variable-frequency switch permanently open.
When steady conditions were reached, outputs
AT, AT,, . . . AT, were measured with the
digital voltmeter. Thus the temperature dis-
tribution under ‘‘steady-state surfaces per-
manently in contact” condition was obtained.
At this condition, see Fig. 4(b),

[5]
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ATI = TA - Tls = ATls (17)
AT, =T, — Ty, = AT, (18)

Outputs AT;, AT, and AT, were then ob-
served at various switching frequencies and
durations of contact, once the quasi-steady
state was reached. After each series of tests
the “steady-state surfaces permanently in con-
tact” temperature distribution was checked.

5. RESULTS

Referring to Fig. 4(b) the loss L was evaluated
from equation (5) using mean values of AT.
(viz. ATy, AT;), AT, and AT,—see equations
(17) and (18). Thus,
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The values obtained for L were in very close
agreement. /; was calculated from equation (6)
and used to evaluate the dimensionless group
(/o).

These results are tabulated in Table 1 while
Fig. 7 shows a plot of (f1?/x) against ( fz,).

6. DISCUSSION
It will be seen from the plot of (f12/x) against
(fz.), Fig. 7, that all the points lie very close
indeed to a single curve drawn among them,
thus verifying the relationship given by equa-
tion (8). For small values of loss L, it will be
seen from equation (6) that

=L _ 2% (19) 1.0 (20)
A Tls A Tzs L li
Table 1.
Frequency, H, —» 0-0145 0-073 0-18 0-585
B L (e B L (Bwm (D L (Bm (k) L (fB
00828 051 5-05 00327 0472 18-7 00372 0-343 157 00612 0170 7-86
00204 0-325 1-08 00871 0303 4-44 0-061 0272 8-05 0-105 0127 406
0-403 0176 0212 0126 0244 2:43 0115 0191 322 0167 00937 2:00
0-515 0-125 0-0945 0182  0-205 1:56 0-18 0138 1-48 0378  0-038 0292
0667 0072 0-0279 0234 0168 0-945 0304 0085 0498 0467 00275 0149
0786  0-034 000575 0-313 0126 0482 043 0054 0188 0595 00163 00515
0509  0-067 0-122 0-50 0-042 0-111 0672 00111 00234
0726 0023 00129 0612 00272 00451 0765 00067  0-0085
0778 0016 000615 0723 00159 00151
0-844  0-0065 0-00247
Frequency H, — 0-99 4-07 813 164
(fr) L (f#/a) (fr) L Bl (fr) L By () L ([ /)
00446 0-154 10-5 00311 0-0895 12-6 00518 0-046 605 00525 00267 378
00857 0121 60 0117  0-0461 3-04 0-1165 0-0284 223 0137 0-0171 1-52
01075 0100 392 0-176 00340 1-62 0-223 00178 0855 0184 00149 1-15
0164 00752 209 0-265 00225 0-690 0328 00123 0403 0242 00120  0-740
0214 00602 130 037 0-0156 0-327 043 0-00875 0-193 0337 000872 0-389
0284 00438 0665 0472 00109 0-158 0-523 000586 00906 0479 000494 0124
0385 00295 0293 0600 000625 00515 0596 00043 0-0485 0579 000310 0-0486
0496 00183 0110 0730  0-0032 00134  0-688 000263 00181 0-683 000192 0-0186
0-585 00135 00595 0-838 000137 000245 0749  0-0018 0-00845 0-790  0-00089 0-004
0-68 00079  0-0201 0-870  0-0006 0-00095
0772 000444 000630
0-833  0-00301 0-00289
0-895 000099 0000311
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whence L tends to a value given by
fP\ ,
L= ( )t

If the frequency of contact with a given
system (of fixed ! and a) is varied while (fz,) is
maintained constant, then from equations (6)

(21)
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and (8), since L cannot be negative or exceed
unity,

- + (pif)? 22

L= pif) (22)

where p= a_.qlgf_‘[‘)j (23)
- (p/f)? ,

L=——""" 24

giving T+ (p/f P (24)

Thus, as f increases so L falls, and at suffi-
ciently large values of (f7,) i.e. small p, loss L of
heat flow brought about by periodic interruption
of heat flow will be small.

It should be emphasised that the analogue
does not solve the partial differential equation
(1) but only the finite-difference approximations
to it, equations (9){16); which includes the
boundary condition that the temperature at the
hottest end of the bar is fixed ie. AT, =0,
equation (9). In practical cases the amplitude
of temperature fluctuation within the rod will
decay exponentially [6] with distance from
the contact planes. At the lowest frequency
investigated, 0-0145 Hz the amplitude at the
hottest end of the bar would only amount to
2-2 per cent of that at the contact plane, thus
approximating to the boundary condition
closely.

Since a non-uniform division of the model
Fig. 4(a) was employed it is difficult to estimate
the error due to the finite-difference approxima-
tion. However, comparison of these results
with some obtained using the division shown in
Fig. 8 shows them to be in close agreement.

It is emphasised that the data obtained is
applicable only to the case where both hot and
cold members are of identical material and
perfect contact and separation occurs at the
plane of contact. Cases where the members are
of different materials and where thermal contact
resistance is present are being studied currently
and will be dealt with in a later report.

Clearly the results suggest that in practical
cases, at sufficiently high values of (fr.) and
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frequency thermal contact resistance at the
contact plane will exert a more significant effect
on heat flow than the periodic interruption at
the contact plane.
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APPENDIX

Consider Fig. 9, which shows the temperature
distribution in the case where the hot and cold
members are made of identical material of
thermal conductivity k,

(i) their lengths are not equal

(i) a thermal contact resistance (1/h) exists
at the plane of contact between hot and cold
members. This introduces a discontinuity at
the plane of contact.

Hot member 8| & Cold member _|
4 3ls
7
2 o
2
4
0
a
E
ks
767\
8

0 H c ! Distance x

F1G6.9

(iti) the hot and cold members are per-
manently in contact.

Clearly the heat flux ¢ is given by
= k(TA - TOH) — k(TOC - TB)

¢ H C
=hTo, — To  (29)
which on eliminating T;,, and T, gives
_ - T
= {(1/10 H+ 0+ (l/h)} 29

Thus, for given end temperatures T, and Tj,
overall length of the system (H + C) and
contact resistance (1/h), the heat flux ¢ is
independent of its position between the ends
A and B.

Consider now the case where there is perfect
thermal contact between the hot and cold
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members when they are brought together and
no heat transfer between the members when
they are separated.

Figure 10 shows the temperature distribution
when the members are meeting and parting
at the plane of contact at a given frequency
and ratio of contact time: periodic time ()
and when quasi-steady conditions are reached.

The temperature in the immediate region of
the plane of contact will vary with time but at
some depth é below the surface, the fluctuation
of temperature will be negligible [5]. The
shaded areas in Fig. 10 are bounded by the
maximum and minimum temperature reached
during a cycle of contact and separation of the
two members. The time average temperature
distribution however is given by line
ADT,,, T,. EB. This is of the same form as
in Fig. 10 and hence again the heat flux is
independent of the position of the contact
plane between the ends 4 and B provided of
course, that it is not positioned so close to
A or B that the temperature at A and B fluc-

Temperature

!
|
i
;
!
|
|
i
t
i
|
'
i
H
|
i
|
i
i
|

8

Distance x

FiG. 10

tuates, thus invalidating our boundary condition
of fixed temperatures at A and B. However, if
we stipulated that the temperature at 4 and B
were allowed to fluctuate but with a fixed
time-average value, the heat flux ¢ would
remain independent of the position of the
contact plane over the entire distance between
A and B.

ETUDE ANALOGIQUE DU TRANSPORT DE CHALEUR A TRAVERS DES SURFACES
PERIODIQUEMENT EN CONTACT

Résumé—Un calculateur analogique a ét¢ employé pour déterminer I'effet de la fréquence et de la durée
de contact par cycle sur le transport de chaleur 4 travers des surfaces qui se rejoignent et se séparent selon
un cycle régulier. Les surfaces étaient constituées par des matériaux identiques et I'on a supposé que le
contact et la séparation thermique étaient parfaits.

Les résultats montrent qu’a des fréquences élevées, le perte de vitesse de transfert de chaleur provenant
de I'interruption du flux de chaleur, due a la séparation des surfaces, est faible et dépendant moins de la
durée de contact par cycle qu’aux basses fréquences. La relation entre la diminution de la vitesse de trans-

fert de chaleur, la fréquence et la durée de contact est montrée par une courbe unique.

EINE ANALOGIE-UNTERSUCHUNG DES WARMEDURCHGANGS DURCH PERIODISCH
SICH BERUHRENDE FLACHEN

Zusammenfassung—Mit Hilfe eines Analogrechners wurde der Einfluss von Frequenz und Dauer des
Kontakts pro Periode auf den Wiarmeiibergang durch Flichen untersucht, die in regelméssiger Folge
zusammengefiihrt und wieder getrennt werden.

Die Flichen waren aud gleichem Material, es wurde vollstandiger thermischer Kontakt und vollstandige
Trennung vorausgesetzt.

Die Ergebnisse zeigen, dass bei hohen Frequenzen die Abnahme des Wirmeiibergangs bei der Unter-
brechnung des Wiirmestroms durch Trennung der Flichen klein bleibt und die Kontaktdauer von gerin-
gerem Einfluss ist als bei kleinen Frequenzen. Der Zusammenhang zwischen Abnahme des Wirmeiiber-

gangs. Frequenz und Kontaktdauer wird durch eine einzige Kurve dargestellt.

AHAJIOTOBOE UCCJENOBAHUE TEHNJIOOBMEHA YEPE3 INEPUOANYECKU
HKOHTAKTHBIE ITOBEPXHOCTH
Apnoramma—OC NOMONIBX AHAJOIOBOYM BHYMCIMTEIBHON MAILIMHBL OIPEAENAIOCh BIMAHUE

YaCTOTH M JIJIUTEJBHOCTH KOHTAKTA B TeUeHNE IINKIIA HA ITePEeHOC TerJia 4epes3 BCTPevanuecs
U pacxoifiuecsi B COOTBETCTBMH C DPEIYJIAAPHBLIM IIMKIOM MOBEePXHOCTH. HOBerHOCTYI
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NBTOTOBJIEHb U3 MIETHYHOrO MATEPUafa U IPHHATO, YTO TeNJOBON KOHTAKT U pasfelieHie
HIeaJbHBIE.

PeaynbTaTsl MOKa3bIBAIOT, YTO IPU BHICOKMX YaCcTOTAX YMEHbLIIEHHE TEILIOBOrO MOTOKA,
BO3HUKAIOIIEE M3-33 Pas/ielieHusI OBEPXHOCTeN , HEBEIMKO M MEHbIIE 3aBCHT OT [JINTEJIbHOCTH
KOHTAKTA B TeUeHNe HMKJIA, 4eM MPU HU3KUX 4acToTaxX. COOTHOLIEHUE MEMKLY yMEHBIIeHHEM

ATE AT aTIA TYameT 4Y3CTOTON U HJIHTE’ Amy M ATAmAaARTIAT P A —— 2

TEHJOBOTO IIOTOKAE, YaCTOTON U AIUTENIbHOCTHIO KOHTAKTA TMpeACTaBACHO OAHOM KpHBOH.



